IB Physics: K.A. Tsokos

Teacher notes

Unit E

The decay constant as a probability per unit time

We know that if we start with N_{0} nuclei of a radioactive substance, after time Δt we will be left with $N=N_{0} e^{-\lambda \Delta t}$ nuclei that will not have decayed. This means that the number of nuclei that did decay in time Δt is $\Delta N=N_{0}-N=N_{0}\left(1-e^{-\lambda \Delta t}\right)$.

If $\lambda \Delta t \ll 1$ we may expand

$$
1-e^{-\lambda \Delta t} \approx 1-(1-\lambda \Delta t)=\lambda \Delta t
$$

and so $\Delta N \approx N_{0} \lambda \Delta t$

The probability p of decay is then

$$
p=\frac{\Delta N}{N_{0}} \approx \frac{N_{0} \lambda \Delta t}{N_{0}}=\lambda \Delta t
$$

and so the probability of decay per unit time is $\frac{p}{\Delta t}=\lambda$.

So suppose that $\lambda=5.00 \mathrm{~min}^{-1}$. What is the probability of decay within 1 minute? Here, $\lambda \Delta t=5.00 \times 1.0=5.00$ which is not less than 1 , so the discussion above makes no sense; the probability is not 5 ! But we can express $\lambda=5.00 \mathrm{~min}^{-1}=\frac{5.00}{60}=\frac{1}{12} \mathrm{~s}^{-1}$ and ask for the probability of decay within 1 second. Now $\lambda \Delta t=\frac{1}{12} \times 1.0=\frac{1}{12}$ and is smaller than 1 . The probability of no decay is then $1-\frac{1}{12}$. The probability of no decay in 60 seconds is $\left(1-\frac{1}{12}\right)^{60}$ and so the probability of decay is

$$
1-\left(1-\frac{1}{12}\right)^{60}=0.99460
$$

How good is this approximation? The exact number of nuclei that decayed in 1 minute is

$$
N_{0}-N=N_{0}\left(1-e^{-\lambda \Delta t}\right)=N_{0}\left(1-e^{-5}\right)
$$

IB Physics: K.A. Tsokos

and so the probability of decay is

$$
\frac{N_{0}\left(1-e^{-5}\right)}{N_{0}}=1-e^{-5}=0.99326
$$

We have agreement to 2 decimal places.
We can make the approximation better by expressing $\lambda=\frac{1}{12 \times 10^{3}} \mathrm{~ms}^{-1}$. Then repeating the above steps, the probability of decay within one minute is

$$
1-\left(1-\frac{1}{12 \times 10^{3}}\right)^{60 \times 10^{3}}=0.99326
$$

which agrees with the exact answer to 5 decimal places.
So the statement " λ is the probability of decay per unit time" makes sense only if the unit of time Δt is chosen such that $\lambda \Delta t \ll 1$.

For the mathematicians: we have been given $\lambda=5.00 \mathrm{~min}^{-1}$. We express this in a unit smaller than 1 \min. Say, $\frac{5}{N} \mathrm{u}^{-1}$ for some arbitrary time unit u where $1 \mathrm{~min}=N$ und N is a large number. Then the probability of decay within one minute is

$$
1-\left(1-\frac{5}{N}\right)^{N}
$$

As N gets larger and larger we know that $\lim _{N \rightarrow \infty}\left(1-\frac{5}{N}\right)^{N}=e^{-5}$ and the approximate expression now becomes the exact expression $1-e^{-5}$.

